
MATLAB TUTORIAL
MATH/CS 375

1 Environment
1.1 Command Window (or Interpreter)

• quick access
• good for developing ideas
• good for accessing data in the workspace
• poor performance and editing/debugging capabilities

1.2 Scripts and Functions

• good test bed: all info in the workspace
• fast, linear
• function can be optimized and cached
• don't fill up the workspace with memory that you have to manage,
• reusable code
• will use these for HW’s
• More on functions later…

2 Scalars, Vectors and Matrices

2.1 Scalars

a=2

a=2; % The semicolon ; suppresses output

2.2 Vectors

 x= [1;2;3;4;5] %Column Vector

 x = [1 2 3 4 5] %Row Vector.

Rows are separated by semicolons. The entries in a row are separated by spaces or commas

 x(2) %access the second component of the vector x

 x(3) = 7; %set the third component of x as 7
 x

2.3 Matrices

 A = [1 2 3; 4 5 6; 7 8 9]

 A(2,3) = -4; %Modify the (2,3) element of A
 A

3 Built-in Variables, Functions and Commands

 pi %3.14159

 format long %Change the number of digits displayed

 pi

 format short

 %Some useful built-in functions

 size(A) %size of a variable

 length(x) %length of a vector

 max(x) %returns the largest entry of a vector

 min(x) %returns the smallest entry of a vector

 sin(a) %returns sin of our variable a

 sin(x) %returns a vector of sin of entries of x

4 Creating matrices and vectors

 x1 = 1:5 %Creates a Row Vector whole components increase by 1

 x2 = 1:0.5:5 %Creates a Row Vector whole components increase by 0.5

 x3 = 5:-0.5:1 %Creates a Row Vector whole components decrease by 0.5

 x4 = linspace(1,5,9) %Creates a vector from 1 to 5 with 9 equally spaced
 entries

 A = zeros(3,2) %Creates a 3x2 matrix of all zeros

 A = ones(2,4) %Creates a 2x4 matrix of all ones

 A = eye(3) %Creates a 3x3 identity matrix

 A = diag([1,2,3,4]) %Creates a 4x4 diagonal matrix with the vector [1,2,3,4] on
 the diagonal

5 Operations on Vectors and Matrices

5.1 Addition, Multiplication, Etc

 A = [1 2; 3 4]

 B = A + A %Matrix addition

 C = A*A %Matrix multiplication

 D = A.*A %Elementwise multiplication (NOT matrix-matrix
 multiplication)

 E = A^3 % E = A*A*A

 F = A.^3 %F = [1^3 2^3; 3^3 4^3]

 G = inv(A) %inverse of A

 E = det(A) %determinant of A

 F = A' %Transpose of A

5.2 Accessing subvectors
	
 x=0:0.1:1;
 n=length(x)
 x2=x(5:10) % What is x2?
 x2=x([1,3,4,11]) % What is x2?
 x2=x(2:4:11) % What is x2?

5.3 Accessing submatrices

a=[100 90 85; 117 110 108; 84 84 84; 96 90 88];
[m,n]=size(x)
a2=a(2,3) % What is a2?
a2=a(:,2) % What is a2?
a2=a(2,:) % What is a2?
a2=a(2:3,:) % What is a2?
a2=a(2:3,[1,3]) % What is a2?

6 Graphics

6.1 Plot command
x=0:.1:1;
y =sin(2*pi*x);
plot(x,y); % the two vectors have to have same dimensions

6.1.1 Labeling axis
xlabel('x');
ylabel('y');

6.1.2 Line type options:
plot(x,y,'-');
plot(x,y,':');
plot(x,y,'--');
plot(x,y,'-.');

6.1.3 Color options: y,m,c,r,g,b,w,k
plot(x,y,'g'); % green line (line is default)

6.1.4 Markeroptions: .,o,x,+,*,s,d,v,^,<,>,p,h
plot(x,y,'x'); % blue star (blue is default)

6.1.5 Using several options together
plot(x,y,'*-r'); % red line with star markers

6.2 Plotting several curves

6.2.1 Use the hold command

x=0:0.05:1;
y1=sin(2*pi*x);
y2=cos(2*pi*x);
plot(x,y1,'-b')
hold on
plot(x,y2,'--r')

6.2.2 Labeling
xlabel('x');
ylabel('y');
title('The Force Awakens is awesome')
legend('sin(x)', 'cos(x)')

6.2.3 Saving Figures as PDF or Other Formats

saveas(gcf,'episode_8.png')
saveas(gcf,'episode_9.pdf')

gcf	is	a	builtin	command	to	access	the	"current"	figure	

6.3 Other builtin plotting functions

close all %closes all the figures

Also see
loglog, semilogx, semilogy
%%%%%%

7 Control Structures

7.1 if statement

a = rand(1); %Random value between 0 and 1
if a > 2/3
 disp('a>2/3') %
elseif a < 1/3
 disp('a<1/3')
else
 disp('1/3 <= a <= 2/3')
end

built-in function disp displays its argument

disp(['a = ' num2str(a)])

7.2 logical operators:

<	,	>	,	<=	,	>=,	==,	~=	

Note:	0	is	false,	while	any	non-zero	value	is	considered	true	

7.3 for loop

7.3.1 Example 1:
	
for i = [2,4,6,8]
 disp(i^2); %i takes values 2, 4, 6, 8
end

7.3.2 Example 2:

a=0;b=1;n=10; delx=(b-a)/n; x = zeros(n+1,1); % Set variables
for i=1:n+1
 x(i)=a+delx*(i-1); % index of x has to be an integer > 0 >> end
end

7.3.3 Example 3: for loop to display a table of values
	
a=0;b=1;n=10; delx=(b-a)/n; x = zeros(n+1,1); % Set variables
for i=1:n+1
 disp(sprintf('%d \t %6.4f', i, x(i)));
end

Look	at	the	syntax	for	using	sprintf.	It’s	a	useful	command!	

7.3.4 Example 4: for loop to compute the sum of all elements of a vector x

x = 1 : 0.1: 10;
n = length(x);
s = 0;
for i = 1 : n
 s = s + x(i);
end
disp(s)

%note that the builtin function sum(x) does the same job

7.3.5 Example 5: Nested for loops for matrix operations
	
n = 10;
for i=1:n
 for j=1:n
 a(i,j) = 1/(i+j-1);
 end
end

7.4 while loop
	
a = 1;
while a <= 10 %while loop repeats as long as the given expression in front of
while is true
 disp(a)
 a = a+1;
end

8 Scripts
You can type a string of commands into a file whose name ends in .m, for example ‘flnm.m’. If you then
type

>> flnm

in your command window, it executes all the commands in the file flnm.m. Make sure you document
your script files! Add a few lines of comments that state what the script does.

9 Functions

MATLAB	Functions	are	similar	to	functions	in	Fortran	or	C.	They	enable	us	to	write	the	code	more	
efficiently,	and	in	a	more	readable	manner.	 	The	code	for	a	MATLAB	function	must	be	placed	in	a	
separate	.m	file	having	the	same	name	as	the	function.	The	general	structure	for	the	function	is		
	
function	⟨Output	parameters⟩	=	⟨Name	of	Function⟩	(⟨Input	Parameters⟩)		
% % %	Comments	that	completely	specify	the	function		
 ⟨function	body⟩		
	
	
A	function	is	called	by	typing		
>>	variable	=	⟨Name	of	Function⟩ 	
	
When	writing	a	 function,	 somewhere	 in	 the	 function	body	 the	desired	value	must	be	assigned	 to	
the	output	variable!		
	

9.1 Examples
	

9.1.1 Example 1: Function with two inputs and one output
	
Question: Write a function with input parameters x and n that evaluates the nth order Taylor
approximation of ex. Write a script that calls the function for various values of n and plots the
error in the approximation.

Solution: The following code is written in a file called ApproxExp.m:

function y=ApproxExp(x,n);
% Output parameter: y (nth order Taylor approximation of e^x)
%Input parameters: x (scalar)
% n (integer)
sumo = 1;
for k=1:n
 sumo = sumo + x^k/factorial(k);
end
y = sumo;

A script that references the above function and plots approximation error is:

x=4;
max_terms = 10; z = zeros(max_terms,1);
for n=1:max_terms
 z(n) =ApproxExp(x,n);
end
exact=exp(4); %use builtin function exp
plot(abs(exact-z)); xlabel('terms'); ylabel('error');
close all;

9.1.2 Example 2: Function with multiple outputs and builtin functions as arguments

function [d,err]=MyDeriv(f,fprime,a,h)
% Output parameter: d (approximate derivative using finite difference (f(h+h)-
f(a))/h)
% err (approximation error)
% Input parameters: f (function)
% fprime (derivative function)
% a (point at which derivative approx)
% h (stepsize)

d = (f(a+h)-f(a))/h;
err = abs(d-fprime(a));

A script that references the above function and plots the approximation error is given below.

a=1;
h=logspace(-1,-16,16);
n=length(h);
for i=1:n
 [d(i),err(i)]=MyDeriv(@sin,@cos,a,h(i));
end
loglog(h,err);

9.1.3 Example 3: Anonymous Functions
	
We	define	two	anonymous	functions	in	the	code	below.	The	anonymous	functions	are	defined	using	
the	syntax	@	as	shown	below:	
	
h = 0.1;
g=@(x)(x.^2);
gprime=@(x)(2*x);
[d,err]=MyDeriv(g,gprime,a,h)
	

9.1.4 Example 4: Passing functions in files as arguments

We have seen how to pass in as an argument a function already defined in MATLAB (such as sin, cos),
or an anonymous function (note difference in calling script). Alternatively, we can pass in a user
specified function that is not inline. Consider functions f1 in file f1.m and df1 in file df1.m:

function y = f1(x)
y = (x.^2)

function y = df1(x)
y = 2*x;

Now you can call

 [d,err]=MyDeriv(@f1,@df1,1,.1)

9.1.5 Example 5: Function with one vector output

function y = my_funky_fcn(x)

% Output parameter: y (vector of outputs)
% Input parameters: x (vector of values)

y = (sin(x)).^2;

A script that references the above function is

x = 0:0.1:pi;
y = my_funky_fcn(x);
plot(x,y)
y2 = sin(x);
hold on;
plot(x,y2);
legend('sin(x)*sin(x)', 'sin(x)');

10 Other useful Matlab commands

save,	load,	clear	all			(Google	or	Bing	them)	

