MATLAB TUTORIAL
MATH/CS 375

1 Environment
1.1 Command Window (or Interpreter)

Command Window @

g >> |

quick access

good for developing ideas

good for accessing data in the workspace

poor performance and editing/debugging capabilities

1.2 Scripts and Functions

function y = my_funky_fcn(x)

% Output parameter: y (vector of outputs)
Input parameters: x (vector of values)

o
%

o Ul hs, WN

- y = (sin(x)).~2;]

good test bed: all info in the workspace

fast, linear

function can be optimized and cached

don't fill up the workspace with memory that you have to manage,
reusable code

will use these for HW’s

More on functions later...

2 Scalars, Vectors and Matrices

2.1 Scalars
a=2

a=2; % The semicolon ; suppresses output

2.2 Vectors

x= [1;2;3;4;5] %Column Vector

x =[1 2 3 4 5] %Row Vector.
Rows are separated by semicolons. The entries in a row are separated by spaces or commas
x(2) %access the second component of the vector x

x(3) = 7; %set the third component of x as 7
X

2.3 Matrices
A=10123; 456; 7 89]

A(2,3) = -4; %Modify the (2,3) element of A
A

3 Built-in Variables, Functions and Commands
pi $3.14159

format long %Change the number of digits displayed

pi

format short

$Some useful built-in functions

size(A) $size of a variable

length(x) %length of a vector

max(x) $returns the largest entry of a vector

min(x) $returns the smallest entry of a vector

sin(a) ¢returns sin of our variable a

sin(x) ¢returns a vector of sin of entries of x

4 Creating matrices and vectors

xl = 1:5 %Creates a Row Vector whole components increase by 1
x2 = 1:0.5:5 %Creates a Row Vector whole components increase by 0.5
x3 = 5:-0.5:1 %Creates a Row Vector whole components decrease by 0.5
x4 = linspace(l,5,9) %Creates a vector from 1 to 5 with 9 equally spaced
entries
A = zeros(3,2) %Creates a 3x2 matrix of all zeros
A = ones(2,4) %Creates a 2x4 matrix of all ones
A = eye(3) %Creates a 3x3 identity matrix
A = diag([1,2,3,4]) %Creates a 4x4 diagonal matrix with the vector [1,2,3,4] on

the diagonal

S Operations on Vectors and Matrices

5.1 Addition, Multiplication, Etc

A=[12; 3 4]

B=A+A $Matrix addition

C = A*A $¢Matrix multiplication

D = A.*A $Elementwise multiplication (NOT matrix-matrix
multiplication)

E =2A"3 % E = A*A*A

F =A."3 $F = [173 273; 373 473]

G = inv(A) %inverse of A

E = det(A) ¢determinant of A

F =A' $Transpose of A

5.2 Accessing subvectors

x=0:0.1:1;
n=length(x)
x2=x(5:10)
x2=x([1,3,4,11])
x2=x(2:4:11)

o

What is x27?
What is x27?
What is x27?

o

o

5.3 Accessing submatrices

a=[100 90 85; 117 110 108; 84 84 84; 96 90 88];
[m,n]=size(x)

a2=a(2,3) % What is a2?
a2=a(:,2) % What is a2?
a2=a(2,:) % What is a2?

oo

What is a2?
What is a2?

a2=a(2:3,:)
a2=a(2:3,[1,3])

oo

6 Graphics

6.1 Plot command

x=0:.1:1;

y =sin(2*pi*x);

plot(x,y); % the two vectors have to have same dimensions

6.1.1 Labeling axis
xlabel('x");
ylabel('y');

6.1.2 Line type options:
plot(x,y,"'-");

plot(x,y,"':")
plot(x,y, " '—-'
plot(x,y, '-.

~ ~— ~e

~e ~eo

6.1.3 Color options: y,m,c,r,g,b,w,k
plot(x,y, 'g'); % green line (line is default)

6.1.4 Markeroptions: .,0,x,+,%,s,d,v,A,<,>,p,h
plot(x,y, 'x"'); % blue star (blue is default)

6.1.5 Using several options together
plot(x,y, '*-r'); % red line with star markers

6.2 Plotting several curves

6.2.1 Use the hold command

x=0:0.05:1;
yl=sin(2*pi*x);
y2=cos (2*pi*x);
plot(x,yl, '-b")
hold on
plot(x,y2,'--r'")

6.2.2 Labeling

xlabel('x");

ylabel('y');

title('The Force Awakens is awesome')
legend('sin(x) ', 'cos(x)")

6.2.3 Saving Figures as PDF or Other Formats

saveas(gcf, 'episode 8.png')
saveas(gcf, 'episode 9.pdf')

gcf is a builtin command to access the "current” figure

6.3 Other builtin plotting functions

close all %closes all the figures

Also see
loglog, semilogx, semilogy
3%%%%%

7 Control Structures

7.1 if statement

a = rand(1l); %$Random value between 0 and 1
if a > 2/3
disp('a>2/3") %
elseif a < 1/3
disp('a<l/3")
else
disp('1l/3 <= a <= 2/3")
end

built-in function disp displays its argument

disp(['a = ' num2str(a)])

7.2 logical operators:

<,>,<='>= == ~=

))

Note: 0 is false, while any non-zero value is considered true

7.3 for loop

7.3.1 Example 1:

for i = [2,4,6,8]
disp(i”®2); %i takes values 2, 4, 6, 8
end

7.3.2 Example 2:

a=0;b=1;n=10; delx=(b-a)/n; x = zeros(n+l,1);
for i=1l:n+1

x(i)=at+tdelx*(i-1); % index of x has to be an integer > 0 >> end
end

Set variables

oe

7.3.3 Example 3: for loop to display a table of values

a=0;b=1;n=10; delx=(b-a)/n; x = zeros(n+l,1);
for i=1l:n+l

disp(sprintf('sd \t %6.4f', i, x(1)));
end

Set variables

oe

Look at the syntax for using sprintf. It's a useful command!

7.3.4 Example 4: for loop to compute the sum of all elements of a vector x

x=12: 0.1: 10;
n length(x);
s = 0;
for i =1 :n

s = s + x(i);
end
disp(s)

gnote that the builtin function sum(x) does the same job

7.3.5 Example 5: Nested for loops for matrix operations

n = 10;
for i=1l:n
for j=1:n
a(i,j) = 1/(i+j-1);
end
end

7.4 while loop

a=1;
while a <= 10 ¢while loop repeats as long as the given expression in front of
while is true
disp(a)
a = atl;
end

8 Scripts

You can type a string of commands into a file whose name ends in .m, for example ‘flnm.m’. If you then
type

>> flnm

in your command window, it executes all the commands in the file flnm.m.sssMake sure you document
your script files! Add a few lines of comments that state what the script does.

9 Functions

MATLAB Functions are similar to functions in Fortran or C. They enable us to write the code more
efficiently, and in a more readable manner. The code for a MATLAB function must be placed in a
separate .m file having the same name as the function. The general structure for the function is

function (Output parameters) = { Name of Function) ({Input Parameters))
% % % Comments that completely specify the function
(function body)

A function is called by typing
>> variable = (Name of Function)

When writing a function, somewhere in the function body the desired value must be assigned to
the output variable!

9.1 Examples

9.1.1 Example 1: Function with two inputs and one output

Question: Write a function with input parameters x and n that evaluates the nth order Taylor
approximation of e*. Write a script that calls the function for various values of n and plots the
error in the approximation.

Solution: The following code is written in a file called ApproxExp.m:

function y=ApproxExp(x,n);
% Output parameter: y (nth order Taylor approximation of e”x)

$Input parameters: x (scalar)
% n (integer)
sumo = 1;
for k=1:n

sumo = sumo + x“k/factorial(k);
end
y = sumo;

A script that references the above function and plots approximation error is:

x=4;
max_terms = 10; z = zeros(max_terms,1l);
for n=1:max terms

z(n) =ApproxExp(x,n);

end
exact=exp(4); %use builtin function exp
plot(abs(exact-z)); xlabel('terms'); ylabel('error');

close all;

9.1.2 Example 2: Function with multiple outputs and builtin functions as arguments

function [d,err]=MyDeriv(f,fprime,a,h)
Output parameter: d (approximate derivative using finite difference (f(h+h)-

(a))/h)

o

o0 FHh

err (approximation error)
Input parameters: f (function)
fprime (derivative function)
a (point at which derivative approx)
h (stepsize)

o° 00 oo

o

d = (f(a+h)-f(a))/h;
err = abs(d-fprime(a));

A script that references the above function and plots the approximation error is given below.

a=1;

h=logspace(-1,-16,16);

n=length(h);

for i=1:n
[d(i),err(i)]=MyDeriv(@sin,@cos,a,h(i));

end

loglog(h,err);

9.1.3 Example 3: Anonymous Functions

We define two anonymous functions in the code below. The anonymous functions are defined using
the syntax @ as shown below:

h =10.1;

g=@(x) (x."2);

gprime=@(x) (2*x);
[d,err]=MyDeriv(g,gprime,a,h)

9.1.4 Example 4: Passing functions in files as arguments

We have seen how to pass in as an argument a function already defined in MATLAB (such as sin, cos),
or an anonymous function (note difference in calling script). Alternatively, we can pass in a user
specified function that is not inline. Consider functions fl in file fl.m and df1 in file dfl.m:

function y = £1(x)
y = (x.72)
function y = dfl(x)

y = 2*x;

Now you can call

[d,err]=MyDeriv(@fl,@dfl,1,.1)
9.1.5 Example 5: Function with one vector output

function y = my_ funky fcn(x)

o

Output parameter: y (vector of outputs)
Input parameters: X (vector of values)

o

y = (sin(x))."2;
A script that references the above function is

x = 0:0.1:pi;

y = my_ funky fcn(x);

plot(x,y)

y2 = sin(x);

hold on;

plot(x,y2);

legend('sin(x)*sin(x)"', 'sin(x)');

10 Other useful Matlab commands

save, load, clear all (Google or Bing them)

